Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space
ثبت نشده
چکیده
which gives an isometric embedding of the hyperbolic space H into R. Hano and Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings of H in R by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2) for n 1⁄4 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory of Monge-Ampère equations, A.-M. Li [12] studied entire spacelike K-hypersurfaces with uniformly bounded principal curvatures, while the Dirichlet problem for (1.1)–(1.2) in a bounded domain WHR was treated by Delanoë [8] when W is strictly convex, and by
منابع مشابه
$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملSpacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملA Bernstein theorem for complete spacelike constant mean curvature hypersurfaces in Minkowski space
We obtain a gradient estimate for the Gauss maps from complete spacelike constant mean curvature hypersurfaces in Minkowski space into the hyperbolic space. As applications, we prove a Bernstein theorem which says that if the image of the Gauss map is bounded from one side, then the spacelike constant mean curvature hypersurface must be linear. This result extends the previous theorems obtained...
متن کاملInterior Estimates and Longtime Solutions for Mean Curvature Flow of Noncompact Spacelike Hypersurfaces in Minkowski Space
Spacelike hypersurfaces with prescribed mean curvature have played a major role in the study of Lorentzian manifolds Maximal mean curvature zero hypersurfaces were used in the rst proof of the positive mass theorem Constant mean curvature hypersurfaces provide convenient time gauges for the Einstein equations For a survey of results we refer to In and it was shown that entire solutions of the m...
متن کاملThe Dirichlet Problem for Monge-ampère Equations in Non-convex Domains and Spacelike Hypersurfaces of Constant Gauss Curvature
In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in Rn as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006